30 research outputs found

    NMR Dynamics Investigation of Ligand-Induced Changes of Main and Side-Chain Arginine N-H’s in Human Phosphomevalonate Kinase

    Get PDF
    Phosphomevalonate kinase (PMK) catalyzes phosphoryl transfer from adenosine triphosphate (ATP) to mevalonate 5-phosphate (M5P) on the pathway for synthesizing cholesterol and other isoprenoids. To permit this reaction, its substrates must be brought proximal, which would result in a significant and repulsive buildup of negative charge. To facilitate this difficult task, PMK contains 17 arginines and eight lysines. However, the way in which this charge neutralization and binding is achieved, from a structural and dynamics perspective, is not known. More broadly, the role of arginine side-chain dynamics in binding of charged substrates has not been experimentally defined for any protein to date. Herein we report a characterization of changes to the dynamical state of the arginine side chains in PMK due to binding of its highly charged substrates, ATP and M5P. These studies were facilitated by the use of arginine-selective labeling to eliminate spectral overlap. Model-free analysis indicated that while substrate binding has little effect on the arginine backbone dynamics, binding of either substrate leads to significant rigidification of the arginine side chains throughout the protein, even those that are \u3e8 Å from the binding site. Such a global rigidification of arginine side chains is unprecedented and suggests that there are long-range electrostatic interactions of sufficient strength to restrict the motion of arginine side chains on the picosecond-to-nanosecond time scale. It will be interesting to see whether such effects are general for arginine residues in proteins that bind highly charged substrates, once additional studies of arginine side-chain dynamics are reported

    Substrate Induced Structural and Dynamics Changes in Human Phosphomevalonate Iinase and Implications for Mechanism

    Get PDF
    Phosphomevalonate kinase (PMK) catalyzes an essential step in the mevalonate pathway, which is the only pathway for synthesis of isoprenoids and steroids in humans. PMK catalyzes transfer of the γ-phosphate of ATP to mevalonate 5-phosphate (M5P) to form mevalonate 5-diphosphate. Bringing these phosphate groups in proximity to react is especially challenging, given the high negative charge density on the four phosphate groups in the active site. As such, conformational and dynamics changes needed to form the Michaelis complex are of mechanistic interest. Herein, we report the characterization of substrate induced changes (Mg-ADP, M5P, and the ternary complex) in PMK using NMR-based dynamics and chemical shift perturbation measurements. Mg-ADP and M5P Kd\u27s were 6–60 μM in all complexes, consistent with there being little binding synergy. Binding of M5P causes the PMK structure to compress (τc = 13.5 nsec), whereas subsequent binding of Mg-ADP opens the structure up (τc = 15.6 nsec). The overall complex seems to stay very rigid on the psec-nsec timescale with an average NMR order parameter of S2 ∼0.88. Data are consistent with addition of M5P causing movement around a hinge region to permit domain closure, which would bring the M5P domain close to ATP to permit catalysis. Dynamics data identify potential hinge residues as H55 and R93, based on their low order parameters and their location in extended regions that connect the M5P and ATP domains in the PMK homology model. Likewise, D163 may be a hinge residue for the lid region that is homologous to the adenylate kinase lid, covering the “Walker-A” catalytic loop. Binding of ATP or ADP appears to cause similar conformational changes; however, these observations do not indicate an obvious role for γ-phosphate binding interactions. Indeed, the role of γ-phosphate interactions may be more subtle than suggested by ATP/ADP comparisons, because the conservative O to NH substitution in the β-γ bridge of ATP causes a dramatic decrease in affinity and induces few chemical shift perturbations. In terms of positioning of catalytic residues, binding of M5P induces a rigidification of Gly21 (adjacent to the catalytically important Lys22), although exchange broadening in the ternary complex suggests some motion on a slower timescale does still occur. Finally, the first nine residues of the N-terminus are highly disordered, suggesting that they may be part of a cleavable signal or regulatory peptide sequence. Proteins 2009. © 2008 Wiley-Liss, Inc

    Molecular Docking and NMR Binding Studies to Identify Novel Inhibitors of Human Phosphomevalonate Kinase

    Get PDF
    Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based 1H–15N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 μM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development

    Functional contribution of a conserved, mobile loop histidine of phosphoribulokinase

    No full text
    In the Rhodobacter sphaeroides phosphoribulokinase (PRK) structure, there are several disordered regions, including a loop containing invariant residues Y98 and H100. The functional importance of these residues has been unclear. PRK is inactivated by diethyl pyrocarbonate (DEPC) and protected by the substrates ATP and Ru5P, as well as by the competitive inhibitor, 6-phosphogluconate, suggesting active site histidine residue(s). PRK contains only three invariant histidines: H45, H100, and H134. Previous mutagenesis studies discount significant function for H134, but implicate H45 in Ru5P binding. PRK mutant H45N is inactivated by DEPC, implicating a second active site histidine. To evaluate the function of H100, as well as another invariant loop residue Y98, PRK mutants Y98L, H100A, H100N, and H100Q were characterized. Mutant PRK binding stoichiometries for the fluorescent alternative substrate, trinitrophenyl-ATP, as well as the allosteric activator, NADH, are comparable to wild-type PRK values, suggesting intact effector and substrate binding sites. The KmRu5P for the H100 mutants shows modest eight- to 14-fold inflation effects, whereas Y98L exhibits a 40-fold inflation for KmRu5P. However, Y98L's Ki for the competitive inhibitor 6-phosphogluconate is close to that of wild-type PRK. These observations suggest that Y98 and H100 are not essential Ru5P binding determinants. The Vm of Y98L is diminished 27-fold compared with wild-type PRK. In contrast, H100A, H100N, and H100Q exhibit significant decreases in Vm of 2600-, 2300-, and 735-fold, respectively. Results suggest that the mobile region containing Y98 and H100 must contribute to PRK's active site. Moreover, H100’s imidazole significantly influences catalytic efficiency

    Detection of Acetyl- S

    No full text
    corecore